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• How accurate is the local strain rate, reference velocity, ...?

• Can we use an alternate counterflow flame property for optimization and
validation of chemical kinetic models?
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Extinction Strain Rate of Nonpremixed Flames
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• A brief review

• Uncertainties of experimental data:
— premixed flames (last MACCCR Fuels Meeting at NIST)
— non-premixed flames (eg. ethylene-air data of USC, NASA Langley, and
UVa)

• Two-dimensional effects?
— LDV and PIV data
— UNICORN simulations by Katta

• Mechanism reduction based on principal component/QSSA analyses

• Concluding remarks



Review - Free-floating Limit
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• Ideal, free-floating counterflow field for L/D > 2

L = nozzle separation dist.

Free floating flow field (ideal)

Mixing layer

FAir

Stagnation planeFlame

Ideal case

Potter, Heimel, and Buttler
Eighth Combustion Symposium, 1960

aglobal ∼ 1900s−1 at L/D ∼ 1
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• Non-ideal counterflow field for L/D < 1

L = nozzle separation dist.

Free floating flow field (ideal)

Mixing layer

FAir

Stagnation planeFlame

Non-ideal case

Potter, Heimel, and Buttler
Eighth Combustion Symposium, 1960

aglobal ∼ 1900s−1 at L/D ∼ 1



Review - Influence of Nozzle Exit Profile
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• Non-ideal separation distance effect on nozzle exit velocity profile
• First demonstrated by Rolon et al. in early 1990’s.
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Review - Influence of Radial Boundary Condition
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• Finite ∂vr/∂r (≡ U ) (Chelliah et al., 23rd Symp., 1990, Smooke et al. 1990)
• Axial velocity of methane-air non-premixed flames near extinction
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Uncertainties – Burning Velocity of Premixed Flames
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• Three key uncertainties
(i) local strain rate, (ii) reference velocity
(ii) linear vs. non-linear extrapolation (Stahl, Warnatz, and Rogg, 1988).



Some Definitions of Nonpremixed Flame Characteristics
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• Global Strain Rate aglobal = 4 vair/L (Seshadri and Williams, 1978)
where vair from (i) Volume/Area, (ii) LDV/PIV, and (iii) computations.
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Extinction limit of ethylene-air Nonpremixed Flames
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• ONE key uncertainty ⇒ measurement of strain rate!

• Experiments from
USC, NASA Langley,
and UVa.

• Chemical kinetic
models of Wang and
co-workers.

• Full Stefan-Maxwell
Eq. to reduce uncer-
tainty of diffusion
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Influence of U = 0 vs. U = Finite on Local Strain Rate
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• dvz/dz + 2ρU(z) = 0 (Kee et al. 1988, Smooke et al., 1990)
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Summary of Experimental Data and Uncertainties
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• Particle seeding in LDV/PIV ⇒ lower local strain rate?
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2D Axisymmetric Computations

MACCCR Fuels Meeting at USC September 2009 – 15 / 25

• Amantini et al. (2007) considered a methane-air case
• Vish Katta’s UNICORN code with USC Mech II Optimized for ethylene-air
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• Amantini et al. (2007) considered a methane-air case
• Vish Katta’s UNICORN code with USC Mech II Optimized for ethylene-air

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−300

−200

−100

0

100

200

300

x [cm]

v 
[c

m
/s

]

 

 
Quasi 1D (U=0)
2D UNICORN



Outline

MACCCR Fuels Meeting at USC September 2009 – 16 / 25

• A brief review

• Uncertainties of experimental data:
— premixed flames (last MACCCR Fuels Meeting at NIST)
— non-premixed flames (eg. ethylene-air data of USC, NASA Langley, and
UVa)

• Two-dimensional effects?
— LDV and PIV data
— UNICORN simulations by Katta

• Mechanism reduction based on principal component/QSSA analyses

• Concluding remarks



Principal Component Analysis with Sensitivity (PCAS)
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• Starting point of PCAS is the construction of response function (Vajda, Valko,
and Turanyi (1985)):

Q(P) =
q∑

j=1

m∑

i=1

[
fi(xj ,P)− fi(xj ,P0)

fi(xj ,P0)

]2

where P, P0 are unperturbed and perturbed parameters (k = 1, ..., p); fi a
set of target functions (i = 1, ..., m); xj collection of analysis points
(j = 1, ..., q).
• Around P0, the response function can be approximated as:

Q(P) ≈ q(P) = (∆P)T STS(∆P) = (∆P)T UT ΛU(∆P) =
p∑

k=1

λk(∆Ψk)2

where ∆P = P−P0; S collection of sensitivity matricies; λk eigenvalues; U
normalized eigenvectors; ∆Ψ = UTP principal components.



Application of PCAS to Ignition Delay
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• Several key issues!!!
• Ethylene-air, p=1.0atm, φ=1.0 with Wang 2003 detailed model (71 species in
467 reactions)
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• Several key issues!!!
• Ethylene-air, p=1.0atm, φ=1.0 with Wang 2003 detailed model (71 species in
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Application of PCAS to Flame Propagation
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• Ethylene-air, p=1.0atm, T0=300 K with Wang 2003 detailed model (71
species in 467 reactions)

28 30 32 34 36 38 40 42 44 46
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

# of Species

L
2 n

o
rm

 o
f 

th
e 

E
rr

o
r

 

 

m_p__sBV
m_p__sBV__sH_nDH
m_p__sBV__sH_nDH_xH

0.4 0.6 0.8 1 1.2 1.4 1.6
0

10

20

30

40

50

60

70

80

φ
S

0 L
 [

cm
/s

]

 

 

m_p__sBV (32)
m_p__sBV_sH_nDH_xH (32)
m_p__sBV_sH_nDH (32)



Application of PCAS to Flame Extinction
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• Ethylene-air, p=1.0atm, T0=300 K
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QSSA Reduction Approach
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• QSSA Reduction Approach —- Zambon and Chelliah, Combustion and
Flame (2007) — 15-step and 18-step reduced reaction models for ethylene-air
based on a 31 species and 128 reaction skeletal model from Wang 2003.

• In the process of updating based on USC Mech II Optimized.



NIST Chemical Kinetics Database Program
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• Extremely useful tool to analyze differences between chemical kinetic
models (Don Burgess)



Concluding Remarks
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• In quasi 1D extinction limit computations, U = 0 and U = finite (from
actual experiments) differ by nearly 10%!!!

• In extinction experiments with convergent nozzles, L/D = 1 case shows a
non top-hat velocity profile ⇒ main contributor to the differences between
the measured local strain rate and the global strain rate

• Random errors (1160 ±20) are too large to extract any systematic
uncertainty associated with L/D variation

• detailed reaction models continue to evolve and may converge through
collaborative based efforts like PrIME, this Fuels Group, ...

⇒ need to create accurate and independent experimental data with
well-defined uncertainties

• automated reduction procedures are needed to take advantage of the
evolving detailed reaction models (PCAS/QSSA, ...)
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